We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2017 and may include earlier monitoring data.

The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Type of water source in use: Ground Water Wells

Name and general location of sources: Well #9A (Del Norte & C St), Well #10 (Vineland & E St.), Well #12 (Industrial Way), Well #14 (Vineland & Whitesbridge), Well #15 (15201 W. California), Well #17 (920 Goldenrod)

Drinking Water Source Assessment Information: Well #9A. The source is considered most vulnerable to the following activities associated with contaminants detected in the water supply: metal plating/finishing/fabricating, automobile-repair shops, utility stations-maintenance areas, schools, office buildings/complexes, RV-mini storage. The source is considered most vulnerable to the following activities not associated with any detected contaminants: Septic systems-low density [-1/acre], Sewer collection systems. Well# 15. The source is considered most vulnerable to the following activities with contaminants detected in the water supply; chemical/petroleum processing/storage, RV mini storage, schools. The source is considered most vulnerable to the following activities not associated with any detected contaminants: automobile-repair shops, farm chemical distributor/application service, junk/scrap/salvage yard, pesticide/fertilizer/petroleum storage/transfer areas, sewer collection systems, and wells-agricultural/irrigation. Well# 17. The source considered most vulnerable to the following activities not associated with any detected contaminants: Septic systems-high [-1/acre]. The drinking water source assessment was completed in 2012. A copy of the complete assessment is available at CDPH District Office at 265 W. Bullard Ave. Suite# 101, Fresno, CA. 93704. You may request a summary of the assessment be sent to you by contacting CDPH at (559) 447-3300.

Time and place of regularly scheduled board meetings for public participation: 1st and 3rd Wednesday of each month at 850 S. Madera Ave. Kerman, CA.

For more information, contact: Kenneth Moore - Phone: (559) 846-9343

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set close to the PHGs or MCLGs as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- **Microbial contaminants**, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- **Inorganic contaminants**, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- **Pesticides and herbicides** that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- **Organic chemical contaminants**, including synthetic and volatile organic chemicals that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- **Radioactive contaminants** that can be naturally-occurring or be the result of oil and gas production and mining activities.
In order to ensure that tap water is safe to drink, the USEPA and the State Water Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4 and 5, list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of an AL, MCL, MRDL or TT is asterisked. Additional information regarding the violation is provided later in this report.

<table>
<thead>
<tr>
<th>Microbiological Contaminants (complete if bacteria detected)</th>
<th>Highest No. of Detections</th>
<th>No. of Months in Violation</th>
<th>MCL</th>
<th>MCLG</th>
<th>Typical Source of Bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform Bacteria (state Total Coliform Rule)</td>
<td>(In a mo.) 0</td>
<td>0</td>
<td>1 positive monthly sample</td>
<td>0</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>Fecal Coliform or E. coli (state Total Coliform Rule)</td>
<td>(In the year) 0</td>
<td>0</td>
<td>A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or E. coli positive</td>
<td>0</td>
<td>Human and animal fecal waste</td>
</tr>
<tr>
<td>E. coli (federal Revised Total Coliform Rule)</td>
<td>(In the year) 0</td>
<td>0</td>
<td>(a)</td>
<td>0</td>
<td>Human and animal fecal waste</td>
</tr>
</tbody>
</table>

(a) Routine and repeat samples are total coliform-positive and either is E. coli-positive or system fails to take repeat samples following E. coli-positive routine sample or system fails to analyze total coliform-positive repeat sample for E. coli.

<table>
<thead>
<tr>
<th>Lead and Copper (complete if lead or copper detected in the last sample set)</th>
<th>Sample Date</th>
<th>No. of Samples Collected</th>
<th>90th Percentile Level Detected</th>
<th>No. Sites Exceeding AL</th>
<th>AL</th>
<th>PHG</th>
<th>No. of Schools Requesting Lead Sampling</th>
<th>Typical Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (ppb)</td>
<td>7/12/2017</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>0.2</td>
<td>0</td>
<td>Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits</td>
</tr>
<tr>
<td>Copper (ppm)</td>
<td>7/12/2017</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>1.3</td>
<td>0.3</td>
<td>Not applicable</td>
<td>Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemical or Constituent (and reporting units)</th>
<th>Sample Date</th>
<th>Average Level Detected</th>
<th>Range of Detections</th>
<th>MCL</th>
<th>PHG (MCLG)</th>
<th>Typical Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium (ppm)</td>
<td>12/2/2015</td>
<td>35.3</td>
<td>29-40</td>
<td>none</td>
<td>none</td>
<td>Salt present in the water and is generally naturally occurring</td>
</tr>
<tr>
<td>Hardness (ppm)</td>
<td>12/2/2015</td>
<td>26.8</td>
<td>15-43</td>
<td>none</td>
<td>none</td>
<td>Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring</td>
</tr>
</tbody>
</table>
TABLE 4 – DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD

<table>
<thead>
<tr>
<th>Chemical or Constituent (and reporting units)</th>
<th>Sample Date</th>
<th>Average Level Detected</th>
<th>Range of Detections</th>
<th>MCL (MRDL)</th>
<th>PHG (MCLG) (MRDLG)</th>
<th>Typical Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate (mg/L)</td>
<td>11/20/17</td>
<td>2.0</td>
<td>1.8-2.9</td>
<td>10</td>
<td>10</td>
<td>Runoff and leaching from fertilizer use: Leaching from septic tanks and sewage; Erosion of natural deposits</td>
</tr>
<tr>
<td>Fluoride (ppm)</td>
<td>12/2/2015</td>
<td>0.11</td>
<td>0.10-0.13</td>
<td>2.0</td>
<td>1</td>
<td>Erosion of natural deposits; water additive; Discharge from fertilizer and aluminum factories</td>
</tr>
<tr>
<td>Arsenic (ppb)</td>
<td>12/2/2015</td>
<td>5.5</td>
<td>3.3-7</td>
<td>10</td>
<td>.004</td>
<td>Erosion of natural deposits, runoff from orchards, grass and electronic production waste</td>
</tr>
<tr>
<td>Chromium (ppb)</td>
<td>12/2/2015</td>
<td>5.5</td>
<td>3.3-7</td>
<td>50</td>
<td>(100)</td>
<td>Discharge from steel and pulp mills and chrome plating; erosion of natural deposits</td>
</tr>
<tr>
<td>Gross Alpha (pCi/L)</td>
<td>10/18/2017</td>
<td>3.4</td>
<td>0-14</td>
<td>15</td>
<td>N/A</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Uranium (pCi/L)</td>
<td>3/8/2017</td>
<td>2.5</td>
<td>0-7.5</td>
<td>20</td>
<td>0.43</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Chromium Hexavalent (ppb)</td>
<td>7/5/17</td>
<td>22.41</td>
<td>6.5-29</td>
<td>N/A</td>
<td>.02</td>
<td>Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits</td>
</tr>
</tbody>
</table>

TABLE 5 – DETECTION OF CONTAMINANTS WITH A SECONDARY DRINKING WATER STANDARD

<table>
<thead>
<tr>
<th>Sample Date</th>
<th>Average Level Detected</th>
<th>Range of Detections</th>
<th>MCL</th>
<th>PHG (MCLG)</th>
<th>Typical Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride (mg/L)</td>
<td>12/2/2015</td>
<td>7.6</td>
<td>6.2-11</td>
<td>500</td>
<td>N/A</td>
</tr>
<tr>
<td>Sulfate (mg/L)</td>
<td>12/2/2015</td>
<td>3.0</td>
<td>2.7-3.3</td>
<td>500</td>
<td>N/A</td>
</tr>
<tr>
<td>Color (units)</td>
<td>12/2/2015</td>
<td>1.75</td>
<td>0-5</td>
<td>15</td>
<td>N/A</td>
</tr>
<tr>
<td>Total Dissolved Solids (mg/L)</td>
<td>12/2/2015</td>
<td>141.6</td>
<td>130-150</td>
<td>1000</td>
<td>N/A</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>12/2/2015</td>
<td>0.14</td>
<td>0-0.23</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>Specific Conductance (µS/cm)</td>
<td>10/18/2017</td>
<td>248</td>
<td>200-430</td>
<td>1600</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA’s Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. City of Kerman is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic’s possible health effects against the costs of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

For Water Systems Providing Ground Water as a Source of Drinking Water

<table>
<thead>
<tr>
<th>Microbiological Contaminants (complete if fecal-indicator detected)</th>
<th>Total No. of Detections</th>
<th>Sample Dates</th>
<th>MCL [MRDL]</th>
<th>PHG (MCLG) [MRDLG]</th>
<th>Typical Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>(In the year) 0</td>
<td>Monthly</td>
<td>0</td>
<td>(0)</td>
<td>Human and animal fecal waste</td>
</tr>
<tr>
<td>Enterococci</td>
<td>(In the year) 0</td>
<td>Monthly</td>
<td>TT</td>
<td>n/a</td>
<td>Human and animal fecal waste</td>
</tr>
<tr>
<td>Coliphage</td>
<td>(In the year) 0</td>
<td>Monthly</td>
<td>TT</td>
<td>n/a</td>
<td>Human and animal fecal waste</td>
</tr>
</tbody>
</table>